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A new Lyapunov stability condition is formulated for the shallow-water equations, 
using a gauge-variable formalism. This sufficient condition is derived for the claw of 
pert.urbations that conserve the total mass. It is weaker than existing stability 
criteria, i.e. it applies to a wider class of flows. Formal stability to infinitesimally 
small perturbations of arbitrary shape is obtained for two classes of large-scale 
geophysical flows : pseudo-eastward flow with constant shear, and localized coherent 
structures of modon type. 

1. Introduction and motivation 
Since the pioneering study of the Fermi-Pasta-Ulam (FPU) problem by Zabusky 

& Kruskal (1966), interest in the dynamics of solitary waves has grown in many 
branches of the physical sciences. Fluid dynamicists have investigated solitary waves 
in plasmas and ideal flows with various horizontal scales, extending from laboratory 
to planetary dimensions. In the field of geophysical fluid dynamics (GFD), work on 
solitary waves of Rossby type has been particularly intensive in the last decade. 
Consequently, a new approach toward the understanding of localized, coherent, 
synoptic-scale motions is emerging : long-lived vortical structures which often obtain 
in the geophysical fluid environment may be explained in terms of the dynamics of 
solitary waves. 

Quasi-geostrophic solitary-wave solutions in GFD are usually classified into two 
types (Flierl et al. 1980) : the first is known as Rossby solitons (Redekopp 1977) and 
the second is represented by modons (Stern 1975). The former type is a class of 
approximate solutions to the full equations of motion in the following sense: the 
derived Korteweg-de Vries (KdV) equations, for which they are exact solutions, 
result from truncated small-parameter expansion of the full equations. The latter 
type is a class of exact solutions to the quasi-geostrophic or barotropic vorticity 
equations, though they fail to be continuous either in their vorticity field or in their 
derivatives of some order. 

These two types of solutions have been used as models of such long-lived vortices 
as the Great Red Spot of Jupiter (Maxworthy & Redekopp 1976; Ingersoll & Cuong 
1981), atmospheric blocks (McWilliams 1980) and Gulf Stream rings (Flierl et al. 
1980 ; Malanotte-Rizzoli 1982). Direct observational evidence to confirm the validity 
of these models is suggestive, but not conclusive. Stability of solitary-wave solutions 
is therefore an important indicator of their realism and plausibility as the explanation 
of isolated vortex structures. 

Amol’d’s (1965) stability criterion follows from a fairly general application of 
Lyapunov’s direct method to fluid mechanics. Blumen (1968) adapted Arnol’d’s 
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criterion to rotation-dominated geophysical flows. The stability criteria of Arnol’d 
and Blumen were derived by checking the definiteness of the second variation of a 
certain integral invariant. For positive definiteness of such a quantity, Blumen’s 

(1 .1)  
criterion assumes the form 

where @ and f are the stream function and the Coriolis parameter, respectively. 
However, quasi-geostrophic flows in mid-latitudes with large spatial scales and low 
frequencies are pseudo-eastward in the sense that the absolute vorticity f + A@ 
increases to the left of geostrophic velocity (Andrews 1984). Pseudo-eastward shear 
flows violate Blumen’s criterion (1.1). So do modon solutions, for which f+A@ = 
-A+, with h a positive constant, in the interior of a circular disk. 

Benzi et al. (1982) derived a modified criterion that corresponds to a negative- 
definite norm for an equivalent-barotropic model on an infinite P-plane. Andrews 
(1984) pointed out, however, that steady, inviscid, quasi-geostrophic flows that 
satisfy the Arnol’d-Blumen and Benzi et al. stability criteria, subject to given zonally 
symmetric boundary conditions, must themselves be zonally symmetric parallel 
flows in the entire domain. In Appendix A, we extend Andrews’ argument to show 
that for any two-dimensional, incompressible flow problem with a given (boundary) 
symmetry, Arnol’d-stable solutions must have the same symmetry. Hence Arnol’d 
stability of these solutions is essentially a nonlinear extension of classic results on 
linear stability for separable problems. 

Linear stability analyses by Pierini (1985), Laedke & Spatschek (1986) and 
Swaters (1986) provide partial stability results for propagating modons. The 
numerical study of McWilliams et al. (1981) indicated that eastward-propagating 
modons are quite robust to some finite-amplitude perturbations and that scale- 
dependent thresholds exist for the amplitude of perturbations beyond which modons 
lose their stability. Carnevale et al. (1988) showed recently that the linear stability 
analyses of Pierini (1985) and Swaters (1986) were invalid, since their (formal) 
stability criteria are satisfied not only by stable but also by a rather unrestricted 
class of unstable modes. By using a simple but informative model of triadic 
interactions, Carnevale and colleagues provided a counterexample for the stability 
criteria derived and discussed by Swaters (1986) and reviewed by Flier1 (1987) ; they 
concluded that the stability of eastward-moving modons is still an open question, 
while the derivation of Laedke & Spatschek (1986) for westward-drifting modons 
stands. 

The purpose of this paper is to give an analytic proof of the stability of a stationary 
modon (Stern’s solution) as a preliminary step toward the stability analysis of 
drifting modons (Sakuma 1989). In order to achieve this end we introduce a 
slightly more general setting, which is free from the symmetry restriction found by 
Andrews (1984), and seek a weaker Lyapunov-type stability criterion than the ones 
derived so far. To start with, we consider the stability of steady flows governed by 
the shallow-water equations, in which the velocity field is not necessarily non- 
divergent. In studying Lyapunov stability of various fluids and plasmas, Holm et al. 
(1983) have already obtained stability criteria for numerous systems, including the 
shallow-water equations. Our criterion turns out to be weaker than that of Holm and 
colleagues, and the stability of a stationary modon in a quiescent background is 
easily covered by our, but not by Holm’s, criterion. 

To be more precise, recall that two different notions of Lyapunov stability were 
introduced by Arnol’d and by Holm and colleagues, i.e. nonlinear stability and 
formal stability. Nonlinear stability means essentially the stability of a fixed point of 

V@-/V( f  + A@) ’ 0, 
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a given system to finite-amplitude perturbations. Arnol’d (1969) provided a nonlinear 
stability proof for two-dimensional non-divergent flows by giving (global) convexity 
estimates of a certain conservative quantity ; Holm and colleagues further developed 
these estimates to derive nonlinear stability criteria for other flows. 

Formal stabiEity is defined by Holm et al. (1985) as follows : An equilibrium solution 
U, of a system u = x(u)  is formally stable if a conservative quantity exists whose 
second variation at this solution is positive (or negative) definite; i.e. only local 
convexity of the quantity is required. These authors showed that formal stability is 
sufficient for linear stability of Hamiltonian systems. I n  their stability analyses, 
Blumen (1968) and Benzi et aE. (1982) checked the formal stability of inviscid, 
rotating two-dimensional flows. 

The stability discussed in this paper is formal stability. Our mathematical 
formulation of the problem recovers the formal stability criterion for the shallow- 
water equations of Holm and colleagues and, from it, one can easily get the 
Arnol’d-Blumen criterion (1 .1)  for non-divergent flows. In  addition, our new 
formulation reduces the number of ‘ formally independent variational variables ’, in 
a precise sense to  become apparent forthwith, and hence it yields a weaker criterion 
than the classical one. 

In  order to clarify the above statement, let us consider the heuristic model of 
triadic interaction used by Carnevale et al. (1988). The model is 

X = ayz; $ = bzx; i = C X Y ,  (1.2a<) 

with x ,  y and z the amplitudes of three plane waves having wavenumbers 1, m and 
n, respectively. The coefficients a, b and c are related to these wavenumbers by a = 
n2-m2, b = 12-n2, c = m2-12. The dynamics represented by (1.2) can be regarded as 
a simplification of two-dimensional non-divergent , inviscid flow. The flow conserves 
energy E and enstrophy 2 given respectively by 

E = x2+y2+z2;  2 = Z2x2+m2y2+n2z2. (1.3a, b) 

The quadratic form L L = E - Z / m 2  

is useful in studying the stability of a stationary solution (0, Y ,  0) with wavenumber 
m. Clearly, L is analogous to the Arnol’d stability norm P H  for two-dimensional non- 
divergent flows, 

- 

S2H = ~~~~)2+~$)z+”(AS$)2]~dy. VAP 

The analogy assumes a more concrete form if we formally consider L as the 
function of independent variables 2 and x ,  y, z in E ,  i.e. 

1 
m2 

L = x2+y2+22--2. 

With these formally independent variables, however, L cannot be positive definite, 
while for S2H positive definiteness is attained by V$./VA$ > 0. Yet if we take 
advantage of the simple dependence of 2 on x ,  y and z (equation (1.3b)), then L 
becomes 

So L becomes definite and hence a given stationary solution (0, Y ,  0) is stable if 
ac < 0. For the stability norm a2H of divergent flows, to the best of our knowledge, no 
simplified expression has been derived so far which corresponds to the form (1.7).  In  

L = (cz2-az2)/m2. (1.7) 
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this paper it is shown that such a modification is actually possible for the stability 
norm S2H of the shallow-water equations. 

Our formulation assumes that the variation of the free surface is constrained in 
such a way that total mass be conserved. This assumption is satisfied automatically 
by two-dimensional non-divergent motions and is physically natural in the more 
general case of locally divergent two-dimensional motions, without sources or sinks 
of fluid. 

In $2 we introduce a gauge formalism associated with a vector potential # for the 
3-vector of height h and horizontal momentum components hv, and hv,. A Lyapunov 
functional related to the Hamiltonian is obtained from the action integral of the 
shallow-water equations ; i t  is quadratic in gauge-independent variations. Formal 
stability of stationary solutions is derived a t  the end of $2 for an inertial frame of 
reference and in $3 for a rotating frame. The new stability criterion is applied to zonal 
shear flows in $4, and to Stern’s modon in $5. Concluding remarks follow in $6. The 
connection between symmetry and Arnol’d stability is discussed in Appendix A, and 
certain technical details concerning the gauge formalism are given in Appendix B. 
Appendix C contains a simple example which illustrates geometrically some of the 
arguments in $2. 

-* 

2. Derivation of the new stability criterion 

The shallow-water equations in an inertial reference frame are 
2.1. The energy-Casimir convexity (E-CC) method in gauge variables 

ah -+V. (hv )  = 0;  
at 

(2.la,  b)  

here h is the height of the free surface and v the Cartesian velocity of a column of 
fluid. For the subsequent analysis, it is mathematically convenient to use a three- 
dimensional coordinate space with 

xo = ct, 5, = 2, 5, = y. (2.2a-c) 

No physical significance is implied for this space, and c is taken arbitrarily 
t9 be unity. The mass conservation equation (2.lb) implies that the ‘3-vector’ 
M = (kc, hv,, hv,) is non-diverent in this three-dimensional space and that 
it admits a ‘3-vector’ potential # = (q50, q51, q5,) : 

(2.3 a-c) 

We shall use bold type with an arrow over to denote 3-vectors, and bold type for 
2-vectors. 

For given hc, hv,, hv,, the components $$, i = 0,1,2, of the ‘vector’ potential 4 are 
undetermined to within the ‘three-dimensional gradient ’ of an arbitrary function 
G(xo, x,, 2,). An additional relation, a gauge condition, must be added to determine G 
(Landau & Lifshitz 1962). In  particular, any one of $z, say q50, can equal an arbitrary 
smooth function by adjusting G. This arbitrariness of G in our gauge formulation is 
used to best advantage in determining a Casimir function. 

The first step in the energy-Casimir convexity (EXC) method (e.g. Salmon 1988) 
is to introduce a functional K of the form 

K = K ,  +KB, (2.4) 
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where K A  and K ,  represent the total energy and a Casimir functional respectively. 
K ,  is some function of advectively invariant quantities, i.e. of quantities for which 
the material derivative vanishes identically. Both K A  and KB, separately, are integral 
invariants of the system. The reason for the existence of an invariant KB,  in addition 
to the total energy KA, is the degeneracy of the Poisson bracket of the underlying 
Hamiltonian formulation for Eulerian variables. The functional dependence of KB on 
advectively invariant quantities is determined so that the invariant K be extremal 
at  an equilibrium. The E-CC method was first applied by Amol’d (1965), using an 
arbitrary function of vorticity as the second, Casimir invariant. It was generalized by 
Abarbanel et al. (1986, especially Appendix A). 

In the present formulation, dimensional considerations suggest a Casimir 

where 8 is the two-dimensional domain in which the flow occurs. This KB is non- 
unique since 4, is still arbitrary. Hence an appropriate choice of G corresponds to the 
right determination of the Casimir K,. In other words, in our formulation, the choice 
of a Casimir is equivalent to the reduction of the number of independent gauge 
variables q5i. The freedom of the gauge formalism allows us to choose K ,  so that the 
first variation of K vanish at  an equilibrium, and that PK be positive definite, 
without requiring the term-wise definiteness of the second variation in total energy 
and in the Casimir, as in the Arnol’d, Blumen and Holm approaches. 

In order to find an appropriate form for the gauge condition, we notice first that 
K ,  becomes an invariant if the advective derivative of 4, vanishes, 

Actually, if 4, is an advective quantity, so is 4, Q ,  where Q is the potential vorticity 
given by 

Using (2.6), (2.7), 

can be rewritten as 

Thus 

since the normal 
domain 8. Using 

%! = JJQ dzl dx, V . (4, Qhv) = at 
component v, of v vanishes along the boundary aC2 of the flow 
(2.3), the gauge condition (2.6) becomes 
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Remark 2.1. The integrand of (2.5), h#o Q ,  has the same form as that of the perfect- 
fluid Casimir, pf(q) (Salmon 1988, equation (6.8)), where p is density, q is potential 
vorticity and f ( q )  an arbitrary function. Thus a choice of #o = #O(Q) here corresponds 
to the choice of f ( q )  in the perfect-fluid equations (Salmon+ 1988). 

Equation? (2.3) indicate that an arbitrary variation 6# defines a 3-momentum 
variation 6M that  conserves mass in two-dimensional physical space, 
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6 6 M =  0. (2.9) 

Any gauge condition imposed on 64 does not interfere with (2.9) being satisfied. A 
suitable gauge con_dition is suggested by the following observation : an infinitesimally 
small change of # induced by the fluid motion with time a t  a fixed location, i.e. 
Jt#$ = (a#i/i3xo)dxo, can be looked upon as a particuLar yr ia t ion the gauge 
condition (2.8) is equivalent for such a variaGon to  M.6, # = 0. Hence a natural 
extension of the condition (2.8) to arbitrary 6# appears to be 

* +  

Me&# = 0. (2.10) 

It is easy to check that (2,lO) is indeed agauge condition on 83. To see that let &* 
be a permissible choice of 6# for a given 6M. For every 6#*, 6G may be determined 
in such a wav that 

namely, 
a6G a6G a6G 

c-+w1-+w2- = -(c6# o* +w, a#: + w, 6#;). ax., ax, ax, 

(2.1 1 a)  

(2.1 1 b )  
+ 

Here wl, w 2  and a#* are all known quantities in determining 6G so that (2.11 b )  is a 
linear, first-order partial differential equation with the unknown SG. Therefore 6G 
can be determined subject to a suitable boundary condition.+Then (2.1 1 a )  says that, 
in particular, a gauge condition (2.10) can be imposed on 64. 

Mass continuity 
in M-variables in #-variables 

*.&=o (2.lb) D#,/Dt = 0 (2.6) 

(natural extension to 

The following diagram 

Gauge conditions for Casimir 

J. .1 

J. .1 
(natural extension to 63) 

+ . S & f = O  (2.9) lZl.63 = 0 (2.10) 

illustrates the relation betwzen mass continuity in M-variables and the gauge 
condition for the Casimir in #-variables. Notice that the condition (2.10) combines 
the two constraints (2.6) and (2.9) in a consistent manner and defines a two- 
dimensional manifold &,Z embedded in three-dimensional #-space ; the tangent 
‘plane’ of M,Z is given by (2.10). On this manifold, mass continuity of the flow itself, 
(2.1b), and of its variations, (2.9), is automatically satisfied, and so is (2.6). In $2.2, 
we develop a Hamiltonian formulation for our dynamical system (2.1) based on the 
principle of least action defined on the cotangent bundle 7 ~ +  of A$ (Arnol’d 1978). 
This will yield a Lyapunov functional K ,  cf. (2.4), for variations restricted by (2.10). 
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2.2. A L yapunov functional 

In  52.1, we showed that the functional K becomes an invariant of the system if 
condition (2.6) holds. For the invariant K to be a Lyapunov functional, steady states 
must correspond to its extremal points. Sufficient conditions for this to be so are 
given in the following proposition. 

+ 
PROPOSITION 2.1. Imposing the gauge condition (2.6) on 4, the functional K becomes 

a generalized Hamiltonian dejned on the cotangent bundle n+ of the manifold A$. The 
extremal points of K correspond to the steady states of the system i f  u sutisjies Amol'd's 
equivortical condition 

S dlv, = 0,  f , 
f , 

and the mass-conservation condition 

6 d16$,=0; 

here ( s ) ~  denotes the tangential component of the 2-vector along the boundary aQ. 
Prooj, The action integral A is defined as 

(2.12 a )  

where 9 $h(v! +v;) -$gh2. (2.12 b) 

is the Lagrangian density and (2.3) are used to express 9 in terms of the derivatives 
of $$, i = 0,  1 ,  2. The variation 6A with respect to 134~ yields 

SA = 6A,+SAs, (2.13 a )  

where the interior contribution SA, and boundary contribution SA, are 

+- '+- S$,+ --- , (2.13b) :r; E) (::: ::) ] 

and B = $(v-v)+gh is the Bernoulli function. The natural boundary conditions for 
the variations are that a$$ = 0, i = 0, 1 ,  2 ,  making SA, vanish. 

The gauge condition (2.10) permits one to eliminate in (2.136), yielding 

12.140,) 

where F ,  and F, are 
(2.14b) 

( 2 . 1 4 ~ )  
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Since and a#, are arbitrary, the necessary and sufficient condition for &A = 
&A, = 0 is that F, = 0 and F, = 0. We see that these two conditions are the 
momentum equation (2.1 a)  in our shallow-water system. Hence the principle of least 
action holds on the tangent bundle of Mz. 

A momentum 2-vector a = (n , ,~ , )  conjugate to 4 = (#1,#2) is now defined by 
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Using (2.3), we easily see that 
n, = w,, n, = -wl. 

i = 1,2. (2.15a, b) 

(2.16) 

The Hamiltonian density X is defined by L? through the Legendre transformation 
(e.g. Goldstein 1980, equation (12-55), p. 563): 

x = xnn,--L?. a#, (2.17) 

Remark 2.2. The absence of noaq5,/ax0 in the Hamiltonian density X reflects the 
fact that, according to (2.10), q50,41 and 4, are no longer independent in our 
formulation. As far as the relation between #1 and ni is concerned, we may extend 

(2.15 c) 
(2.15) to define ro as 

no = -. 

1-1 ax0 

8 9  

(2) 
It is then easily seen that no = 0, since 9 does not depend explicitly on C&50/axo. 

Eliminating a$$/azo, i = 1,2, in (2.17) by using (2.3), we get 

Since we can add the divergence of any two-dimensional vector to the Lagrangian 
density 9‘ without affecting the principle of least action, X may be redefined as 

X=XA+XB)  (2.19a) 

where (2.19 b)  

(2 .19~)  

In the Hamiltonian density (2.19), the first term X A  is the total energy density, 
while the second term Z B  equals the Casimir density which we tentatively 
introduced in (2.5). 

With this X ,  it can be shown that the momentum equation ( 2 . 1 ~ )  and (2.3b, c )  are 
recovered by allowing the first variation of the action integral A 

to vanish with respect to independent variations of q51, #,, n,, and n,. Hence we have 
proved the first half of the proposition. 
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Now let us consider the first variations of K A  and K B  with respect to four 
independent variables q51, q52, nl and nz. A little manipulation yields 

+ ~ 2 ( 8 ~ 2 + ~ ~ q 5 ~ 1 J - f  aR dlq50% (2.20b) 

where Q is the potential vorticity defined in (2 .7) .  In deriving 6KB, the gauge 
condition (2.10) was used again. For steady states both an,/ax0 and a$,/ax, vanish, 
so ( 2 . 2 0 ~ '  b)  reduce to 

SKI3 = -/,dX1dX2 h[7f1(~~,--Q452) +n2(6n2+Q6q51)l-; "faQdZdvZ, (2.21b) 

since B and #o are constant along the boundaries. The justification of 2&/i3x0 = 0 is 
not entirely obvious and is given in Appendix B. 

The two key assumptions from the statement of Proposition 2.1 are required at 
this point : 

jaod18vZ = 0;  (2.22) 

faodZ6q5, = 0.  (2.23) 

Assumption (2.22) states that the integrated vorticity over the entire domain 
remains the same, and was already used in Amol'd's original stability analysis for 
two-dimensional non-divergent flows. The constraint (2.23) is a new assumption, for 
the shallow-water equations; it also has a very simple physical meaning, namely the 
conservation of total mass. Indeed, from (2 .3a) ,  we easily see that 

So (2.23) is equivalent to 
dz, dx, h = 0. (2.24) 

The total mass conservation condition (2+.24) makes good physical sense and is 
consistent with the non-divergence of 6M mentioned earlier. Under the two 
assumptions (2.22) and (2.23),  it follows from (2.21) that 

6K 6KA+6KB = 0 (2.25) 

for steady states. Thus we have proved Proposition 2.1. 
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2.3. Formal stability 
Since K is an integral invariant, a given steady solution of (2.1) is formally stable if 
the second variation of K is either positive or negative definite near that solution. 
The second variation of K ,  with respect to four independent variations &$,, &b2, &n, 
and an2 is 

S2KA = 1, dx, dx2[+h(6$ + ST;) + 6h(n16nl + n2 an2) + $g ah2], (2.26) 

where 

In calculating the second variation of KB, attention must be paid to the variation 
since by (2.10) it is no longer independent of a$, and a$,. So we temporarily of 

denote it by From ( 2 . 1 9 ~ ) ~  one easily gets 

xB[$O+A$O’ n 1 + 8 n l ,  nZ+an21-%[$Olnll n21 

If were simply a function of 4, and $2, A$o would assume the form 

Thus, in (2.27), not only the third term but also the second term appears to 
contribute to the second variation of K,. However, (2.10) should not be interpreted 
as expressing the first variation of with respect to independent variations $, and 
$2. Rather &ha must be specified by two arbitrary variations a$, and subject to 
(2.10), which does not necessarily mean th5t ca$,/a$, = -vt, z ’ = 1,2. As mentioned 
already, in the three-dimensional $-space, 84 must be on the tangent plane of A: and 
(2.10) is the exact condition for that, so it should be treated as a supplementary 
condition which is imposed after taking formally independent variations of $$, mi,  
i = 0,1,2. In actuality, we have shown that, for a given steady state, the generalized 
Hamiltonian K becomes extremal for the va$-hons {an,, an,, 84: fi-S$ = O } .  The 
gauge condition (2.10) keeps the variation 84 exactly on the tangent plane of the 
manifold A: on which our principle of least action is defined. Thus setting A$o = a$,,, 
one gets 

a2KB = - JJQ dx, dx, ago (- aan, + 2). aan 
ax, ax, 

1 
= - dx, dx, ; (n2 S$, -nl [ vo711+ 

ax. 
J J 11 

(2.28) 

For reasons to become clear later on, we define Sx by 

axl an, - ax2 an2 + &a$,. (2.29a, b )  
Using the identities 

1 1 1 
- ( 7 7 2 & 4 - 1 & 4 )  = --(n,an1+n2~n2)+-(n,a~,+n2aX2) 
C CQ CQ and 
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S2KB can be rewritten as 
(2.30) 

1 where 
S2Kg) = ~~Qd~lds,-(n,Sn,+n2Sn2) CQ , (2.31) 

1 1 + V - Sx) - - II - SII( - V In Q - Sx + V - Sx) . (2.32) 
CQ 

From (2.26), (2.31) and (2.32), we see that S2KA +S2Kg) is gauge independent, while 
S2Kg) is not. That is to say S2KA+S2Kg) is expressed in terms of ah, an1( = Sv,), 
Sn,( = -Sv,) and observable field variables for a given steady state, while S2K$) 
depends explicitly upon the unobservable quantity Sx, equation (2.29). Since the 
stability criterion should not depend on the particular choice of gauge variables, one 
is led therewith to conjecture that the stability of a given steady state may not 
depend upon the definiteness of J2Kg). 

This conjecture can be formulated precisely and proven rigorously as : 

STATEMENT A. If S2KA + S2K$) is either positive or negative definite, then a given 
steady state is linearly stable. 

In order to prove this statement, we consider the contrapositive one, which 
becomes true in case Statement A is actually true and vice versa. Namely, 

STATEMENT B. If a given steady state is linearly unstable, then S2KA+S2Kg) is 
indeJinite. 

Remark 2.3. The proof of Statement B is carried out by following a trajectory of 
the system through the equilibrium point, call it 0, whose stability we wish to prove. 
It is shown that the existence of any unstable direction issuing from 0 implies that 
S 2 K A  + S2K$) vanishes along such a direction, in agreement with Statement B. This 
type of argument might be unfamiliar to some readers, and is certainly less 
straightforward than the usual connection between dynamic stability of the system 
and geometric convexity, near the equilibrium, of a Hamiltonian hypersurface. The 
latter connection is natural and well-established when all the variables are 
observables, such as positions and velocities. 

In our gauge formalism, one half of the variables are not observables, being 
constrained vector-potential components. Hence the relation between dynamical 
stability and local convexity of the Hamiltonian is blurred, owing to the presence of 
the gauge-dependent part a2Kg) of the quadratic Hamiltonian form S2K. This part is 
not necessarily constant in time (see also Appendix B), and hence the approach we 
have taken to the stability proof becomes more natural. The approach is illustrated 
by a simple example from point-mass mechanics, a conservative nonlinear pendulum, 
in Appendix C. Readers might want to look a t  this Appendix before or instead of 
going through the proof below. 

Proof. Let 0 be the equilibrium point in phase space which corresponds to the 
steady state. We have seen that the’Hamiltonian K is an integral invariant and that 
0 has to be a critical point of K (Proposition 2.1). If K is definite, 0 is an elliptic point : 
trajectories near 0 are topologically circles, 0 is neutrally stable (linearly), and no 
trajectory passes through 0. If K -is indefinite, 0 is a hyperbolic point : both stable and 
unstable trajectories pass through 0, and 0 is (linearly) unstable. 
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The proof proceeds by following a trajectory through the equilibrium point 0. 
Along m y  trajectory, the momentum equation (2.1 a )  and (2.3) hold. Combining 
these two sets of equations, we obtain 

( 2 . 3 3 ~ )  

(2.33 6) 

The additional constraint on $, we impose at this point is that q5, = q5,(Q). I t  is 
consistent with Remark 2.1, with (2.6), and with the fact that such a relation has to 
hold in a steady state. With this constraint, the above equations become 

where (2.34 c )  

In particular, for steady states, we may set B / c + F  = 0, which says that the 
Bernoulli function B is some function of potential vorticity Q. This fact can be 
derived directly from the steady-state version of (2.1 a) .  For non-steady states, we 

6,nl-QSt$, ( 2 . 3 5 ~ )  
have 

where 

(2.35 b)  

Equations (2.35a, b )  apply to our trajectory through the equilibrium point 0. In 
the limit, a t  0, 

(2.36a, 6) 

But atn6, at$$, i = 1,2,  can be considered as arbitrary variations an,, &bi 

(2.37a, 6) constrained by 

Equations (2.21) indicate that the first variation of the total energy, 6K, (= -SK,), 
vanishes for such variations. The directions (2.37) are also the ones along which Sx 
in (2.29) vanishes, so that S2Kg) is zero in these directions as well. Indeed, all the 
terms in the integrand of 62Kg2,, (2.32), contain either the factor Sx or its divergence, 
V-Sx. But Sx = 6x (xl,x,; t )  is a field quantity, and hence v - 6 ~  = 0 whenever Sx = 0, 
identity being understood with respect to the coordinates x1 and x2. 

Remark 2.4. Equations (2.36) hold trivially at  the equilibrium point, since 6, ni = 
0 = 6, $i, at steady state, for i = 1, 2 separately. But away from 0, they do not hold 
in any full neighbourhood of the steady state. They define, rather, the unstable or 
(asymptotically) stable directions in which we are interested. 

The existence of the directions given by (2.36) depends on the stability of a given 
state. If such (asymptotically stable and) unstable directions really exist, then not 
only SK,( = - 6KB) and S2Kg) but also a2KA + a2Kg) must vanish in these directions. 
Indeed, K (  = KA + K B )  is an integral invariant of the motion, and thus S2K = 0 along 

Sn, - &a$, = 0, + QS$, = 0. 



Stability of stationary barotropic modons by Lyapunov’s direct method 405 

a trajectory through 0. Thus we have proved Statement B, and its contraposition, 
which we restate as: 

PROPOSITION 2.2. If S2KA+S2Kg) is either positive or negative dejinite at a given 

From (2.26) and (2.31)’ we define the gauge-independent part S2K* of the stability 

equilibrium point, then that point is linearly stable. 

norm S’K, 

S2K* S2K A + PKg) = &Sh2 + 2Sh(n, Sn, +n, Sn,) 

It is easy to see that the integrand S2X* in (2.38) reduces to 

(2.39) h dQ PX* = &(an: + sn;, - -- (n, an, + n, Sn,)2 
Q2 d$o 

for Sh = 0.  For positive definiteness of S2X*, it is sufficient in this case that 

(2.40) 

From (B 10) in Appendix B it follows that, at steady state, - #o = Y, where Y is the 
momentum stream function. 

For 6h =I= 0, the integrand can be rewritten as 

and we obtain the sufficient stability criteria 

(2.41 a, b) 

Except for the value of the constant coefficient of the Froude number (T: + n:)/gh in 
(2.41 a ) ,  conditions (2.40) and (2.41) correspond to the (formal) stability criteria of 
Amol’d and of Holm and colleagues, respectively. Further use of the identity 

- (n, an, 4 A, Sn,)2 = (n, Sn, - n2 6n,)2 - 2(74 an; + n; an;) 

++h [( l -A+- -n;  an2 4 dQ ) ST:+ ( I--  8 4  +----T: 4 d& ) ST; ] . (2.42) 
gh Q2dY gh Q2dY 

Equation (2.42) says that S2X* still remains positive definite for negative dQ/dY 
provided that 

O > - >  d& -Q2 { 1 -  8(n:+n:)} (2.43) 
d Y  4(nt+nr,2) gh 
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3. Inclusion of rotation 
No conceptual difficulty arises when we take the effect of the Earth's solid rotation 

into account. The equations of motion in a rotating reference frame follow from the 
principle of least action by formally adding the R-term below to the Lagrangian 
density 9 (Abarbanel 1985). The modified Lagrangian density SR is 

It is understood here that 4 = (h, dl, 4,) gives the momentum field = (hc, hv,, hv,) 
observed in the corotating reference frame and that the constant two-dimensional 
vector R = (R,, R,) satisfies 

8R2 
axl ax2 

where f = f (x , )  is the Coriolis parameter. Without loss of generality we may assume 
that R, = R ( x 2 )  and R, = 0. Repeating the procedure used for an inertial reference 
frame, we obtain a formula analogous to the conditions (2.41 a, b )  and (2.43). That is 

and 

where the absolute potential vorticity 

(3.4) 

replaces Q in (2.7). The first criterion, (3.3), is an extended Arnol'd-Blumen criterion 
for rotating flows in the shallow-water equations. The second criterion (3.4) is new, 
being obtained by the present formulation. 

4. Application to zonal shear flows 

eastward flow in geostrophic balance with constant shear co : As the simplest application of the criteria (3.3), (3.4), let us consider a zonal, i.e. 

~1 = U(y) = coy, V, = 0, f U  = -gdh/dy; (4.1 a%) 

here x, = x is the zonal and y = x2 the meridional coordinate. For this simple flow 
profile, dQ,/dY becomes 

For synoptic-scale flows, the magnitude of relative vorticity I - dU/dyl is one order 
smaller than that of planetary vorticity f,  which implies that their Rossby number 
is of the order of 0.1. So the presence of the planetary vorticity gradient dfldy > 0 
means that the stability criterion (3.3) of Amol'd-Blumen type (dQR/dY > 0) is 
always violated by westerlies, U > 0. This is somewhat counterintuitive since such 
flows are linearly stable by the Rayleigh-Kuo inflection-point theorem (Lin 1967, 
Sec. 4.3; Kuo 1973). 

For the shallow-water equations with zonal symmetry, Ripa (1983) derived a 
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criterion which does cover the stability of (4.1). His derivation depends, however, 
crucially on zonal symmetry, while ours does not. Before proceeding to non-zonal, 
coherent eddies in the next section, it is still of interest to check whether our criterion 
also works for the simple case of westerlies with constant shear. 

Remark 4.1. For an inertial system, the Rayleigh inflection-point theorem can be 
derived from the Arnol’d criterion by Galilean invariance of the momentum 
equations. However, in the case a t  hand, neither the corotating reference frame nor 
a reference frame moving with a constant velocity relative to it is an inertial system. 
Galilean invariance means that the equations of motion keep their form, including 
the value of the coefficients, under translation with arbitrary, but constant, velocity 
(see also Appendix A). Such a translation in the case (3.1) will change the value of 
f and of U(y), breaking the invariance (see also Ghil & Childress 1987, p. 41). 

Using (4.le), (4.2) can be rewritten as 

It is well known that, for synoptic-scale flows in the Northern Hemisphere, low 
pressure (small h) is associated with counterclockwise flow (large potential vorticity) 
and high pressure (large h) accompanies clockwise flow (small potential vorticity) so 
that in general dQR/d!P is negative for such flows. The situation remains the same for 
purely zonal geostrophic flows, since planetary vorticity increases to the north while 
the (scale) height h increases to the south, owing to differential heating by the Sun. 

For synoptic-scale flows in the atmosphere, (4.2) can be numerically estimated as 

where we used f z 
pheric scale height approximately equal to  lo4 m for h. On the other hand, 

s-’, df/dy x 1.6 x 10-l‘ m-’ s-l, U w 15 m s-’ and an atmos- 

Hence alinearly stable geostrophic flow (4.1) satisfies our newly derived criterion (3.4), 
though it violates the classical criterion (3.3). 

Actually the stability of this constant-shear flow can be verified in a little more 
general way. Let us assume that Rossby and Froude numbers, R, and F,., of a given 
flow, R, = U/fL,  Fr = V / g H ,  
are of the order R,  < 0.1, F,. w 0.01 ; here H ,  L and U are scale height, horizontal and 
velocity scales characteristic of the given steady flow. Then we have 

Qk 

(4.4) 

where the last step used the smallness of F,.. 



408 

An elementary 

H .  Sakuma and M .  Chi1 

scale analysis shows that 

So we get 

dlnf w 1-43,L- w 1-a, > 0. 4Udln f I--- 
f dY dY 

d&R>- QI, 
d Y  4(n;+n;)’ 

(4.5) 

which satisfies the criterion .(3.4). 

5. Application to Stern’s modon 
Stern’s modon is a non-divergent, piecewise-differentiable solution of the voriicity 

equation derived from (2.1), in the presence of differential rotation; for this modon 

f(Y)+A@ = -A@ (5.1) 
inside a circle of radius R, while outside of this circle the fluid is a t  rest, I) = 0. Here 
@ is the usual, velocity stream function and R and h satisfy the relation (Stern 1975) : 

R2A x 26.4. (5.2) 
For the interior domain of the modon, 52, = ( r  < R},  where r2 = x2 + y2, 

(5.3) 

For steady states, both the velocity stream function @ and the momentum stream 
function Y are invariant along streamlines. Comparison with (2.3 b,  c) shows that 

dY 
d@ - h‘ 
_-  

Substitution of (5.4) into (5.3) gives 

d Y  h2 

(5.4) 

Use of the geostrophic approximation dh/d@ w f/g yields a simpler form of (5 .5 ) :  

Now let L and U be characteristic length and velocity scales of the modon. Since 
f$ = Lf $ / L  x lY/R,, we see that dQR/dY < 0 if F ,  < R,; this is usually the case for 
rotation-dominated flows encountered in the geophysical fluid environment. The 
classical criterion (3.3) is again violated by such flows. 

However the new criterion (3.4) permits a negative dQR/dY: it states that 

dQR > - Qi 0 > -  
d Y  4(n i+n3 (5.7) 

provided that F, x (n;L+ni)/gh is negligibly small; F ,  Q 1 has to  be assumed in order 
to apply (3.4), derived for (2.1)’ to  non-divergent flows (see Sakuma 1989, Ch. 5, for 
details). Furthermore, if F,  Q R,, then 
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2 26.4 So we obtain with round-off 
O < A = - < ( & ) ,  R2 

where V E Max [(T: +n$]. This can be further simplified as 
V 

R f <  OS1 

(5.9) 

(5.10) 

Hence Stern’s modon in 52, with a rigid free-slip boundary at r = R is stable to 
infinitesimal perturbations of arbitrary form, provided its Rossby number R, is less 
than 0.1. 

Notice that the second variation SaK in (2.26), (2.28) does not include boundary 
terms, and that the perturbations need not vanish along the boundary : the natural 
boundary condition for the variational problem (2.13) under consideration is simply 
that Sv, = 0 along 852, = { r  = R) .  

For the complete flow field of a stationary modon floating in a quiescent 
background, an apparent difficulty arises since our stability analysis cannot be 
applied directly to the entire domain, as the absolute vorticity field f+ A$ has a 
discontinuity at  r = R. Indeed our procedure of getting a new stability criterion 
depends crucially upon the use of (2.36) and (2.37), which cannot be satisfied at  the 
interface r = R since QR is discontinuous there. Yet the velocity at the interface is 
continuous and vanishes there, so it is natural to assume that velocity perturbations 
an, as well as mass perturbations Sh, are also continuous there. 

The proof proceeds by decomposing the stability norm S2K into two parts, interior 
and exterior, 

SaK = /Ifi, dx dy S2X + [Jfio dx dy S2X = S2K, + S2Ko, (5.11) 

where 52, = { r  > R}, and showing that the exterior term is positive definite, while the 
interior term satisfies the proof of Statement B in $2.3. Indeed, the gauge- 
independent part of a2K, is positive definite for arbitrary perturbations, not 
vanishing along the interface 8Q,, provided (5.10) holds. Contrary to the previous 
case, where Sv, = 0 had to be imposed on aa,, here can be quite arbitrary for 
T = R ,  provided it is continuous there, since (2.26), (2.28) for S2KA and S2KB contain no 
integrals along 852,. 

The apparent difficulty with the discontinuity of QR at r = R can now be removed 
by making two observations, which are both specific to the present case of quiescent 
flow in the exterior domain 52,. The first observation is that, since BX, 0 for x sz 
0 = v ,  cf. (2.16), (2.28), both a2XA, the total energy density, and S2XB are 
continuous across aQi. 

To make the second observation, S2K, is decomposed further into its two parts, the 
energy and the Casimir terms, 

SaK = & 2 K ( O )  + S2Kg). A (5.12 a)  

The Casimir vanishes identically in 52,, SzKg) = 0, since u = 0 there. Therewith, the 
second observation is that the use of the argument involving (2.37) to prove 
Statement B and hence Proposition 2.2 becomes superfluous, and no continuity of QR 
across the interface is required. This leaves the energy term, 

~ 2 ~ 2 )  5 I J Q o ~ z d y  (ba~++hhv12) ,  (5.12b) 

Hence (5.10) is a sufficient condition for the formal stability of Stern’s modon in 
which is also positive definite for ar6itrary perturbations. 
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a quiescent background flow. The unrestricted character of the perturbations along 
the rim {r  = R} indicates that the modon is stable to small distortions of the circular 
boundary of the active part of the flow. But the present analysis does not provide any 
upper bound on the finite amplitude of such distortions for which the modon is still 
stable. 

6. Concluding remarks 
By using a gauge-variable formulation of the shallow-water equations, we derived 

a weaker formal stability condition than the classical ones ($2), and extended it to 
rotation dominated, geophysical flows ($3). Our new criterion does not require stable 
planetary flows with constant shear to be pseudo-westward ($4) and it permits one 
to show that Stern’s stationary modon is stable to perturbations with arbitrary scale 
but with infinitesimally small amplitude ($5 ) .  

The success in deriving a meteorologically and oceanographically useful stability 
criterion is due to the new representation of the stability norm, rather than to 
changing the basic idea of Arnol’d’s method. The Hamiltonian K ,  (2.19), consists of 
two terms : one corresponds to total energy, the other is also a conservative quantity, 
related to vorticity, called a Casimir function. This two-term structure of the integral 
invariant K is similar to that of the conservative functional H introduced by Arnol’d 
(1965). Therefore, in phase space, the new criterion has a geometrical interpretation 
similar to Arnol’d’s. The weakening of the stability criterion is merely due to a 
sharper numerical evaluation of the relative contributions of the two terms. This also 
leads to a stability criterion free from the symmetry restriction referred to in $ 1  and 
Appendix A. 

The approach presented here is extended in Sakuma (1989) to drifting modons by 
modifying the Lagrangian density 2 : for drifting modons no problem of matching 
conditions arises, since their absolute vorticity Q is continuous everywhere (although 
its derivative is not). The possibility of obtaining a stability criterion for three- 
dimensional baroclinic flows is also being investigated along similar lines. 
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Abarbanel, A. Arakawa, D. Holm, R. Littlejohn, P. Malanotte Rizzoli, J. Marsden, 
D. Neelin, S. Putterman, P. Ripa, P. Roberts, J. Tribbia, S. Venkateswaran and 
G. Wolansky. We are also grateful to G. Carnevale for providing us with a preprint of 
Carnevale et al. (1988). Comments from D. G. Andrews and two anonymous referees 
were very valuable in improving both the content and the style of the manuscript. 
One of the referees disagrees with our treatment of matching conditions for Stern’s 
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supported by NASA grant NAG 5-713, NSF grant ATM 86-15424 and ONR grant 
NOOO14-87-K-0331. B. Gola turned the usual mess into a first-rate typescript. 

Appendix A. Symmetry and Arnol’d stability 
The purpose of this Appendix is to extend a result of Andrews (1984) on Amol’d- 

stable solutions sharing the symmetry of the underlying problem. Further 
generalization is provided by Chern & Marsden (1990). 

Symmetry of a problem is mathematically equivalent to its invariance under a 
group of transformations that maps the domain on which the problem is defined into 
itself. By problem we mean an initial-boundary-value problem for a system of partial 
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differential equations. Symmetry then requires both the coefficients of the differential 
operators and the initial and boundary conditions to be invariant under the group 
of transformations. 

The simplest case we use for illustration is invariance under x-translation. Consider 
the two-dimensional vorticity equation 

A$t + J ( $ ,  A$) = 0, (A l a )  
defined on the entire plane, or in a channel periodic in the x-direction and with solid 
walls in the y-direction 

~ 

$ . , = O  at y = f l ;  (A 1 b , 4  
here we use, for brevity, subscript notation for partial derivatives. Clearly the 
problem (A 1)  is symmetric as defined above. Stationary solutions of (A 1 )  satisfy 

A$ = F(llr), (A 2) 

(A 3) 

and the Arnol’d stability criterion is (compare ( 1 . 1 )  in the main text) that 

F = dF/d$ > 0. 

Differentiating (A 2) with respect to x, and multiplying by $x, yields 

Integrating (A 4) by parts in both x and y 7  we get 

-J[(V$,J2dxdy = J[$/F’dxdy. 

The right-hand side of (A 5 )  is non-negative for an Arnol’d-stable solution, and it is 
positive unless 

The left-hand side is non-positive, hence (A 6) follows from (A 3) and the translational 
invariance. 

The argument of Andrews (1984) was brought to the attention of one of us (M. G.)  
by R. T. Pierrehumbert (personal communication 1983) in the simpler form (A 4)- 
(A 6). The following theorem is an obvious extension of this argument. 

THEOREM A. For a two-dimensional incompressible flow in an elliptic geometry, 
governed by a problem with given symmetry, an Arnol’d-stable solution must have the 
same symmetry as the problem. 

Remark 1 .  Symmetry permits the use of the eigenfunctions of the associated group 
of transformations as a basis for solutions. Thus x-translations lead to Fourier 
expansion, as an integral in the unbounded case and as a series in the periodic case. 
Likewise cylindrical or spherical symmetry lead to the use of Fourier-Bessel 
functions or spherical harmonics (Tribbia 1984), respectively. Generally speaking, 
this implies that the standard Arnol’d criterion, owing to its very simplicity, only 
permits ascertaining the Lyapunov stability of flows for which linear stability can be 
studied by the classical methods of separation of variables. An example of this in the 
cylindrical-symmetry case is the work of Wan & Pulvirenti (1985). 

Remark 2. The elliptic geometry of the problem is only restricted by the existence 
of an arbitrary symmetry group. Elliptic means that the Riemannian metric tensor 
is positive definite. This assumption is necessary, as will become clear at the end of 
the proof, (A 19). 

v = ykX = 0. (A 6) 

14 FLM 211 
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Proof. This consists simply in reiterating (A 4)-(A 6) in an abstract setting. Let A 
be the underlying two-dimensional manifold, x E A c 9P, on which the problem is 
defined. 9’ is the symmetry group, S , E ~ ’ ,  such that S, A c A, or S,XE& for all t, 
and 

A function (or functional, or operator on functions) on A, f :  A + A, y = f ( x )  E A if 
x E A, is invariant under 9’ if 

8, S,  x = St+s x for all t and s. (A 7) 

f ( S , x )  = f(x) for all t. (A 8) 
9’ is a continuous group if t E W  (the unbounded case above, of translation by an 

arbitrary x-amount) and is discrete if t G k ”  (the periodic case, of translation by 
multiples of a fixed length in the x-direction). One deals accordingly with integrals 
or sums over t-values. 

Functions which satisfy (A 8) are constant along each trajectory of the group. Let 
for instance A = 912 be the (x,y)-plane and 

S,:x+x+t, t€B. 

Then f(S,s,y) = f(x+t,y) = f(x,y) for all t 

implies simply that f(x, y) = f,(y). If t were restricted to the integers, f(x+ 1, y) = f(z, 
y), f would be merely periodic in x, and could be expanded in a Fourier series in x. 

Let Cp = (y1,y2) be a system of curvilinear coordinates on A. In all cases of 
practical interest one can choose y1 = t without loss of generality. In C, the 
covariant form of the steady vorticity and mass-continuity equations is 

~ j ( z ) 2 , 1 - V 1 , 2 ) + 7 1 3 ‘ ( ~ 2 , 1 - v 1 , * ) , 5  = 0, (A 9 4  

(gid),, = 0. (A 9b)  
Here vi and vi are the contravariant and covariant velocity components, respectively, 
partial differentiation is indicated by commas, e.g. v ~ , ~  = av,/a,d, and the summation 
convention is used for same-letter (upper and lower) indices; g is the determinant of 
the metric tensor gu (e.g. Landau & Lifshitz 1962). By definition, an elliptic geometry 
is one for which g t j  dy‘ dyj is positive definite, and hence g > 0 under our assumptions. 
If A is compact without boundary like the spherical Earth (Tribbia 1984), no 
boundary conditions for (A 9a, b)  are necessary, otherwise they are assumed to be 
invariant under 9. 

Equations (A 9a, b )  together yield 

gW(v2,1-v1, 2)/giI,, = 0, (A 10a) 

which is equivalent to 

Here 
J($(,), p’) = 0. 

( f i )  = V2,1-%2 5 -  , 
gi 

(A lob) 

(A l la-d) 

where Aa is the Laplace-Beltrami operator on A. $(J” and 5“) are the modified 
stream function and vorticity in Z,. Equation (A 106) implies that, for steady states, 
c,) is a function F, of ?,W) : 

QP) = F ($(I’)).  (A 12) B 

The Arnol’d stability criterion, in the given geometry, is 
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In  fact, a straightforward calculation of the coordinate transformation yields 

p’ = g ic ,  $,$ = $$’, i = 1,2. (A 14a, b )  

where g and $ are the vorticity and stream function in Cartesian coordinates xl, x2. 
Owing to the symmetry, the partial derivative of gij with respect to t = p1 vanishes. 
In the case of cylindrical symmetry, for instance, choosing 0 = p1 yields g,, = r2, 
gZ2 = 1 and g12 = 0, so that gu,? = 0. 

Differentiation of (A 14a) with respect to ,ul gives 

Fi$%) = giF$,l. (A 15a) 

Substituting (A 14b) into (A 15a) yields 

F’ P = g w .  (A 15b) 

Since gi > 0, it follows that F’ and F; have the same sign. 
Differentiation of (A l la)  with respect to p1 and the use of (A 12) gives 

yf”’ = (%, 1,1-%. 2,l)hi = F; 
Multiplying both sides by $%) and using (A 11 b, c) yields 

$y(%,l,l-%, 2,1)/& = w2(w2,1.1 -?J1,2,1) = q%W2* (A 16) 
After multiplying the left-hand side of (A 16) by gi  and rewriting as 

&“%, 1.1 -?J1,2,1) = ( 9 ~ ~ 2 ~ 2 , 1 ) ~ 1 -  ( S ~ ~ ” 1 ,  112 -+.:I %,1 +s?z %,l’ 

-$$[(.tx 2.’1,1+q1 .2,1lddP’dP2 = J p ; ( $ y , ’ g W  dP2. 

the use of (A 9b)  and of appropriate boundary conditions in the $-direction leads to 

(A 17) 
By definition (A 18a, b) 

Substituting (A 18) into (A 17)’ we obtain 

-$$st,.:1 < , S W  dP2 = $$q$:l)zfl~dP1dP2. (A 19) 
By assumption, the quadratic form g6, dl (2, which is equal to the square of the line 
element ds2 divided by the square of the time increment dtz, is positive definite and 
hence g > 0 as well. 

The left- and right-hand sides of (A 19) can be reconciled, given Arnol’d stability 
(A 13)’ only if 

i.e. if the solution is constant along the trajectories of the symmetry group. 
Q.E.D. 

With respect to GFD applications, we notice that the highest symmetry on the 
sphere is given by rotations about an arbitrary axis. This yields $ E 0 on the 
sphere, i.e. a state of no motion. Rotation about an axis, i.e. a latitude-dependent 
Coriolis parameter f =f(0), breaks this very high symmetry, leaving only the 
corresponding axisymmetry. Thus zonal flows can possess Amol’d-Blumen stability, 
cf. Andrews (1984). 

Finally, the Arnol’d criterion (A 3) for symmetric solutions implies nonlinear 
(Lyapunov) stability with respect to arbitrary perturbations, not just symmetric 
ones (compare Palais 1979). 

14-2 
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Appendix B. Time independence of di for steady states 
In  a steady state, local time changes of every observable quantity vanish, e.g. 

ani/axo = 0 in such states. Whether a$i/axo = 0 holds or not in a steady state is less 
obvious since 4 is a potential wkich cannot be observed directly. It is consistent with 
the gauge condition (2.10) on 4 to assume that is a function of Q :  

$0 = A(&). (B 1) 

- d$o aQ 
ax, dQ axo 

From this we easily get 
- 0, 

since Q is an observable quantity. By differentiating (2.3 b ,  c )  with respect to time and 
using (B 2), we have 

(R 3 )  a24r 
ax; 

- 0 ,  i =  1,2,  

which yields 3 = wi(xl, x,), i = 1 , 2 .  (B 4) 
ax0 

Substitution of (B 4) into the steady-state continuity equation ahlax, = 0 gives 

Therefore w is a gradient, 

(B 5 )  
aw(x1,52) 

Wi(X1,Xz) = ax, . 

Applying the gauge condition (2 .6 )  in the form (2.8) to steady states yields 

Using (B 4) and (B 5 ) ,  (B 6) becomes 
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Equations (B 8 a ,  b )  show that it is always possible to use q5i as q50 without violating 
the gauge condition (2 .24) .  So for steady states, 

(B 9) 

Th&, in particular, (2 .3b ,c )  show that we can, a t  steady state, set 

where Y is the momentum stream function. 

Appendix C. An illustrative example for the proof of Statement B 
Let us consider one-dimensional motion of a point mass under the influence of a 

conservative force k, x + k, x3, k, > 0, k, > 0. The equation of motion for and the 
Hamiltonian of this simple system are 

mx = k l x + k 2 x 3 ,  (C 1) 
n 2  r -  H = - - - l k  x2-Lk 2 4 ,  2m 2 1  4 2  

where the momentum is p = mx. 
The origin 0 = ( x  = 0, p = 0) of the phase space is an unstable equilibrium point. 

The unstable and (asymptotically) stable manifolds of 0 are given by the separatrices 
of H ,  i.e. by 

H = - - ( P - x [ m ( k 1 + ~ k 2 x 2 ) ] ~ ) ( p + x [ m ( k 1  +ik2x2)] i ]  = 0. 1 
2 m  

The unstable and stable manifolds are 

p f x[m(k,  + +k, x”]’ = 0, (C 3 a ,  b )  
respectively. Differentiation of (C 3) with respect to time t and multiplication of both 
sides by dt yields 

[ m ( k l + i k 2 x 2 ) ] i +  I c Z x 2  } d x  
2[m(k1 + $ka x2)li 

In the limit x+O d p  = f (mk,)tdx. 

Each sign corresponds to the equation of a straight line through the origin, even 
though p = x = 0 precisely at 0. Equations (2.36) are the analogue of (C 4) for the 
conjugate momenta ( (bi ,  v i ) ,  given by field variables (bt(xo, x l ,  x2) ,  mi(xo, x l ,  x2) ,  i = 1,2 ,  
rather than the scalars ( x , p ) .  
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